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form of a fit of quintic amplitudes. We then use this fit in order to accurately compute the

tachyon and dilaton effective potential in the limit of infinite level. We observe that to order

four, the effective potential gives unexpectedly accurate results for the vacuum. We are

thus led to conjecture that the effective potential, to a given order, is a good approximation

to the whole potential including all interactions from the vertices up to this order from

the untruncated string field. We then go on and compute the effective potential to order

five. We analyze its vacuum structure and find that it has several saddle points, including

the Yang-Zwiebach vacuum, but also a local minimum. We discuss the possible physical

meanings of these vacua.

Keywords: Tachyon Condensation, Bosonic Strings, String Field Theory.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep092007118/jhep092007118.pdf

mailto:moeller@sissa.it
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
7
)
1
1
8

Contents

1. Introduction 1

2. Combined dilaton and marginal deformations 3

3. Level truncation fits 6

4. The effective potential 9

4.1 Order four 9

4.2 Order five 12

5. Usual level truncation 14

6. Conclusions and prospects 16

A. Quintic contact terms 18

A.1 Integration over the reduced moduli space 18

A.2 Contact terms of tachyons and dilatons 21

A.3 Contact terms of dilatons and marginal fields 25

A.4 Contact terms of four tachyons and one field of level four 25

1. Introduction

The main goal of this paper is to continue the search for a nonperturbative closed bosonic

string vacuum. Although this search in the context of closed bosonic string field theory

(CSFT) [1] originally started in [2 – 4], an important breakthrough came in a paper by

Yang and Zwiebach [5] where it was realized that the ghost dilaton must be included in

the string field in the universal basis. Using the solution of the quartic CSFT vertex [6],

they found a nonperturbative vacuum, namely an extremum of the potential truncated to

order four. Through an argument based on the low-energy effective action of the closed

tachyon, dilaton and massless fields, they conjectured that a CSFT vacuum must have zero

action. In another paper [7], they proposed that this vacuum corresponds to infinite string

coupling and that the universe undergoes a big crunch when the tachyon has rolled to it.

The Yang-Zwiebach vacuum was subsequently studied with more accuracy in [8]. The

CSFT action was still truncated to quartic order, but fields of level up to ten where included

in the string field. The potential value at the vacuum was seen to converge to approximately

−0.050 (in units where α′ = 2). It was then concluded that the quintic terms of the

potential should be included in order to test the vanishing potential conjecture.
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The quintic term of the CSFT action was calculated in [9]. The solution is numerical, it

gives the Strebel differentials determining the local coordinates, everywhere in the reduced

moduli space. This is a complicated calculation, which could fortunately be checked by

verifying the flatness of the dilaton potential to order five; but we devote one section of this

paper to a further check of this solution. Namely we will calculate the effective potential

of the dilaton and one exactly marginal field, to order five. This is the direct extension of a

calculation done in [10, 11] to order four. As expected, we find that the effective potential is

flat (within the uncertainty on the quintic terms), thereby successfully checking the quintic

contact term solution.

As a level truncation analysis similar to the one done in [5, 8], would require, at

order five, many contact terms that are still time-consuming to compute, we decided to

focus instead on the effective tachyon and dilaton potential. We are able to integrate out

massive fields up to level twelve; but in order to obtain the exact terms in the effective

potential (those found after integrating out all levels) we must extrapolate the results to

infinite level. We find that the fits used until now in the literature are unsatisfactory; we

therefore spend a section looking for the best possible functional form of a fit, and we

find a simple expression that gives good results when checking the flatness of the dilaton

and marginal effective potential. We then go on and use this fit for the calculation of the

effective tachyon and dilaton potential to order five. We first spend some time studying this

potential to order four. This allows us to observe that the Yang-Zwiebach vacuum found

from the effective potential, matches very accurately the solution found from the potential

to quartic order with all interactions from a string field at a given level. This is surprising

because the effective potential lacks most of the quartic contact terms which are included

in the full quartic potential. We turn this observation into an approximate conjecture,

essentially stating that this remains true at higher order. To order five, this would imply

that the effective potential, which requires only the quintic contact terms κ2Vt5 , κ2Vt4d,

κ2Vt3d2 , κ2Vt2d3 , κ2Vtd4 , and κ2Vd5 , is a good approximation to the potential to order five

(which contains many many more contact terms).

From the analysis of the effective potential to order five, we find that the Yang-

Zwiebach vacuum still exists to this order, and is shallower than to order four, giving

evidence for the vanishing of the potential at the vacuum. An advantage of the effective

potential is that it allows to check easily if a given extremum is a local minimum, maxi-

mum, or saddle point. We find that the Yang-Zwiebach vacuum is a saddle point. But at

order five, we also find a local minimum. We discuss these implications in the last section.

At last, we want to look at the usual level truncation of the potential, as was done

in [5, 8] to order four. We were able to compute only a few contact terms, namely those of

total level not greater than four. Surprisingly, we see that once we introduce the term of

level two, the Yang-Zwiebach vacuum is destroyed (and does not reappear at level four).

Although this should be checked at higher level, we argue that the effective potential

analysis should be more reliable than the standard level truncation.

This paper is structured as follows: In section 2, we verify the flatness of the potential

in the combined dilaton and marginal directions. We use the data computed there in order

to find a good universal fit in section 3. We can then proceed to the computation of the
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effective potential in section 4. The level truncation analysis is done in section 5, and

the results are compared and discussed in section 6, where some physical interpretations

are also discussed. The technical details of the calculations of quintic contact terms are

collected in appendix A.

2. Combined dilaton and marginal deformations

There are two objectives in this section: We want to test further our computations of the

quintic contact terms; and we want to verify that the effective potential of the dilaton

together with an exactly marginal field, is flat. Our code that computes quintic contact

terms [9] was already successfully checked by verifying the flatness of the dilaton effective

potential at order five. This showed that the five-dilaton contact term κ2Vd5 has been

computed correctly; our code was thus seen reliable at least for the computation of contact

terms of five identical states. Here we want to extend this check to the computations of

terms involving two different kinds of states; this is in fact all that will be needed in the

rest of this paper, either for the tachyon and dilaton effective potential which requires the

contact terms of n tachyons and 5 − n dilatons, or for the potential with quintic terms to

level four, which requires the contact terms of four tachyons and one massive field. The

computations of quintic terms of states not all equal, involve some (not difficult but not

completely trivial) combinatorics and also some symmetry of the reduced moduli space.

The technical details are explained in appendix A. Concretely, we will verify the flatness of

the effective potential of the ghost dilaton d and an exactly marginal field a. The dilaton

is given by

d|D〉 = d (c1c−1 − c̄1c̄−1)|0〉, (2.1)

and the marginal field is

a|A〉 = aαX
−1ᾱ

X
−1c1c̄1|0〉, (2.2)

where we have singled out one spacetime dimension X. Our analysis is the direct extension,

to order five, of the analysis made by Yang and Zwiebach in [11]. There the authors

showed that the contact terms κ2Va4 and κ2Va2d2 are canceled by the contributions from

cubic interactions. In this section we will similarly show that the contact terms κ2Va4d and

κ2Va2d3 are canceled by the contributions from cubic and quartic vertices.

We start with the effective term κ2V eff
a4d

of four marginals and one dilaton. We write

it diagrammatically as

−4! i κ2V eff
a4d = ½½BB

££
ZZ

d

a
a

a
a

+
∑

i

··

TT

d
a

a

a

a

φi +
∑

i

··

TT

a
a

a

d

a

φi . (2.3)

The easiest way to understand the coefficient in the left-hand side is to note that the right-

hand side is an amplitude, and that to form an amplitude from a term in the potential

one should include the combinatorial factor (here 4! is the number of ways to assign the

four marginals) and a −i (we are in Minkowski space, all vertices bring a factor −i and

the propagators bring a factor i). The internal fields φi are all the scalar fields, except for
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the marginal field and dilaton. More explicitly we construct the components of the closed

string field |Φ〉 =
∑

i φi|Φi〉 in the Siegel gauge, from open fields Õj |0〉 and Õk|0〉 of same

levels and arbitrary ghost numbers, provided they add up to two.

|Φi〉 =
(

ÕjÕ
⋆
k − Õ⋆

j Õk

)

|0〉, (2.4)

where the ⋆-conjugation changes left-moving oscillators into right-moving ones and vice-

versa without changing their order. The expression (2.4) is invariant under world-sheet

parity P defined by PΦ = −Φ⋆; it is easy to see from an argument similar to the one in [5],

that we can consistently restrict the string field to have P-eigenvalue one. The open fields

belong to the Hilbert space

H̃open = Span
{

αX
−i1

. . . αX
−ip

L′
−j1

. . . L′
−jq

b−k1
. . . b−kr

c−ℓ1 . . . c−ℓs
c1|0〉

}

, (2.5)

where

i1 ≥ i2 ≥ . . . ip ≥ 1, j1 ≥ j2 ≥ . . . jq ≥ 2, k1 ≥ . . . kr ≥ 1, ℓ1 ≥ . . . ℓs ≥ 1, (2.6)

and the L′
−j are matter Virasoro operators in the 25-dimensional space orthogonal to X.

We can further restrict the closed string field by noting that in the diagrams (2.3) and all

other diagrams in this section, the components |Φi〉 must couple via a cubic vertex to n

marginal fields and 3−n dilatons. These couplings are zero unless the numbers of α’s and

the number of ᾱ’s in |Φi〉 have the same parity which must be opposite to the parity of the

ghost numbers of the open fields composing |Φi〉. Moreover, since a Virasoro L′
−j with odd

index j can couple only to another Virasoro of odd index, we must have an even number of

odd-indexed Virasoro’s in |Φi〉. With the above rules it is straightforward to construct the

closed string field needed in this section. At level zero, we have only the tachyon tc1c̄1|0〉,

at level two we have the dilaton and marginal field, then at levels 4, 6, 8, 10 and 12 (the

highest level considered in this paper) we have respectively 7, 11, 92, 188 and 1016 fields.

We can now continue the calculation of the effective term κ2V eff
a4d

. First we separate

the amplitude (2.3) into a contact term and a Feynman term

κ2V eff
a4d = κ2Va4d + Ca4d, (2.7)

and we will focus on the Feynman term

−4! i Ca4d =
∑

i

··

TT

d
a

a

a

a

φi +
∑

i

··

TT

a
a

a

d

a

φi . (2.8)

Since at each level greater than zero we have several scalar fields, which are in general not

normalized, the propagators in (2.8) will be nondiagonal matrices. We emphasize that the

sums in (2.8) would be really meaningful only if the fields were orthogonal, but in our case

they must be understood schematically although their meaning remains clear. It will be

very convenient to express each of the Feynman diagram in terms of matrix multiplication.
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We introduce the following notations. Ãφiφj
and Ãφiφjφk

are vectors,1 whose components

are given by the coupling constants
(

Ãφiφj

)

k
≡ {Φi,Φj,Φk}

(

Ãφiφjφk

)

h
≡ {Φi,Φj,Φk,Φh} , (2.9)

and P̃ is the zero-momentum propagator, a matrix given by

P̃ = −M̃−1 where M̃ij = 〈Φi|c
−
0 QB |Φj〉. (2.10)

We can now simply translate (2.8) into

−4! i Ca4d = −6 i ÃT
a2dP̃ Ãa2 − 4 i ÃT

a3 P̃ Ãad, (2.11)

where the only nontriviality is to write the combinatorial weights of each diagram. Note

that the factors (−i) in the right-hand side come from two vertices ((−i)2) and one prop-

agator (i). We thus have

Ca4d =
1

4
ÃT

a2dP̃ Ãa2 +
1

6
ÃT

a3P̃ Ãad. (2.12)

We emphasize that the expression (2.12) is exact in the infinite level limit, where all the

vectors Ã and the matrix P̃ have infinite size. In the level truncation we restrict the internal

fields φi in the propagators to have level not greater than, say ℓ. And we define Ca4d(ℓ)

by the expression (2.12) where the matrix P̃ and vectors Ã are truncated to finite size,

including only the indices related to fields of level smaller than or equal to ℓ. The same

convention will apply to all other amplitudes C(ℓ) in this paper. For the way to compute

the quartic terms Ãφiφjφk
we refer the reader to [6, 10, 11, 8]. We have computed them

here up to level twelve, the values of Ca4d(ℓ) are shown in table 1.

The computation of Ca2d3 is done in the same way. This time we have three diagrams

−12i Ca2d3 =
∑

i

··

TT

d
d

d

a

a

φi +
∑

i

··

TT

d
d

a

d

a

φi +
∑

i

··

TT

d
a

a

d

d

φi , (2.13)

from which we can write

Ca2d3 =
1

12
ÃT

d3P̃ Ãa2 +
1

2
ÃT

ad2 P̃ Ãad +
1

4
ÃT

a2dP̃ Ãd2 . (2.14)

And we present the values Ca2d3(ℓ) in table 1. For completeness we also compute Cd5 . This

amplitude was already computed in [9] to level ten and already seen to convincingly cancel

the contact term, but we want to extend it here to level twelve so that the calculation is

complete, and also so that we have more data to test the fits in section 3. Here there is

only one diagram, namely

−5! i Cd5 =
∑

i

··

TT

d
d

d

d

d

φi ⇒ Cd5 =
1

12
ÃT

d3 P̃ Ãd2 . (2.15)
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Ca4d(ℓ) Ca2d3(ℓ) Cd5(ℓ)

ℓ = 0 2.09955 −1.85370 0.401963

ℓ = 4 1.43546 −1.65253 0.362003

ℓ = 6 1.42224 −1.50815 0.325946

ℓ = 8 1.38644 −1.47248 0.316744

ℓ = 10 1.38545 −1.45971 0.311198

ℓ = 12 1.38004 −1.45361 0.309417

ℓ = ∞ 1.3774 −1.4457 0.3063

contact term −1.3779 ± 0.0024 1.4452 ± 0.0053 −0.3063 ± 0.0016

Table 1: The marginal amplitudes from Feynman diagrams with internal fields up to level twelve,

and their extrapolations from the fit (3.6). In the last line we list the contact terms whose compu-

tations are explained in appendix A.

And we list the values of Cd5(ℓ) in table 1.

We also write in this table the extrapolated values C(∞) calculated from the fit (3.6)

which will be explained in section 3. And in the last line we show the contact terms

calculated with the program described in [9]. We relegate the technical details of the

contact terms calculations to appendix A. We see from table 1, that the contact terms

cancel the contributions from the Feynman diagrams with an accuracy well within the error

margins on the contact terms. This is good evidence that, as we expected, the effective

potential of the exactly marginal field a and the dilaton d, is flat. It also shows that the

quintic contact terms of two different kinds of fields, are computed correctly. In fact the

accuracy of the cancellation even suggests that the error on the quintic terms has been

overestimated. This possibility was already discussed in [9], but at present this is still the

best error estimates that we can do.

3. Level truncation fits

In this section, we want to find and motivate a good functional form for a fit of closed

string amplitudes C(ℓ) as functions of the level ℓ. We start by remembering that in open

string field theory, computations to very high levels (typically 100) have been done (see for

example [12]) and it turns out that fits of the form

Cfit
open(ℓ) = f0 +

f1

ℓ
+

f2

ℓ2
+

f3

ℓ3
+ . . . +

fN

ℓN

perform very well. We emphasize that the next-to-leading term is of order ℓ−1, as was

shown from the BST algorithm [13]. Some particular closed string field theory amplitudes,

like

TT

··

··

TT

a

a

a

a

φi or TT

··

··

TT

t

t

t

t

ψi ,

1We reserve the untilded symbols for the universal Hilbert space when we calculate the tachyon and

dilaton effective potential in section 4.
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where the propagating fields φi and ψi are tensor products of twist-even open fields of ghost

number one, can be expressed in terms of open string amplitudes. In these cases it was

shown in [10] that the next-to-leading order of the fit is ℓ−2. One might then suggest that

closed string amplitudes should be fitted with

Cfit(ℓ) = f0 +
f2

ℓ2
+

f3

ℓ3
+ . . . +

fN

ℓN
. (3.1)

But it was found [11] that this fit doesn’t perform well for amplitudes that cannot be

expressed in terms of open physical amplitudes. Instead, fits of the form

Cfit(ℓ) = f0 +
f1

ℓγ
(3.2)

seem to work better once the exponent γ has been adjusted in some way. In particular the

authors of [11] found that γ = 2.7 and γ = 3.2 for the fits of Ca2d2 and Ca4 respectively give

the expected values as ℓ → ∞ (the ones that cancel the quartic contact terms).

One could go on and imagine many variants of the above fits, for example by adding

a term f2

ℓ2γ to (3.2) etc. . . In order to argue what fits are better, we must take a look at

table 1. The first thing that we emphasize is that we will keep only the data points ℓ = 4,

ℓ = 8 and ℓ = 12. Indeed we see for example in the first column of the table, that the

values for ℓ = 4 and ℓ = 6 are very similar, as well as the values for ℓ = 8 and ℓ = 10. This

is easy to understand. Fields of level 4n+2 are made of open fields of odd level 2n+1; but

in open string field theory, the parity of level is very important, indeed the twist symmetry

implies that the open vertex can couple only an even number of odd level fields of ghost

number one (this is why one can consistently set these fields to zero in the nonperturbative

open string vacuum for example). So the similarities between levels 4n and 4n + 2 are just

remnants of twist symmetry. Were we to plot C(ℓ) for all values of ℓ, we would obtain a

rather stair-looking curve, while if we keep only levels 4n (or 4n+2) the curve is smoother

and thus easier to fit. At last we throw away the value at ℓ = 0 as the fits are singular

there.2

The second observation that we can make on table 1, is that the values of C(ℓ) behave

monotonically with the level ℓ. We will assume that this monotonicity is a feature of all

amplitudes and persists at high level. For definiteness, let us now consider a C(ℓ) which

is monotonically decreasing. This monotonicity imposes strong restrictions on a good fit

of C(ℓ) because we want the value of the fit at ℓ → ∞ to be better, i.e. smaller, than

the last data point. If the number of data points that we are fitting is greater than the

number of parameters in our fit, the fit will not go exactly through the data points, and

there is an unacceptable risk that the fit at infinity will give a value larger than our best

data point. There are other restrictions; indeed, if we take the fit (3.1) and all three of our

data points, keeping thus three fit parameters f0, f2 and f3, it might happen that f2 and

f3 have different signs, which would imply that the fit is not monotonically decreasing and

we might again end up with a fitted value at infinity worse than the best data point. We

will therefore choose a fit of the form (3.2).

2One could of course fix that singular behavior by, for example, replacing ℓ by ℓ + ℓ0 in (3.1) or (3.2),

but we observed that the resulting fits are not improved.
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Ca4(ℓ) Ca2d2(ℓ) Cd4(ℓ)

ℓ = 8 0.265827 −0.483015 0.115777

ℓ = 10 0.265827 −0.469970 0.108550

ℓ = 12 0.259977 −0.465334 0.108499

ℓ = ∞ 0.2553 −0.4579 0.1054

contact term −0.2560 0.4571 −0.1056

Table 2: The quartic marginal amplitudes from Feynman diagrams at levels 8, 10 and 12, and

their extrapolations from the fit (3.6). The last line shows the contact terms.

But we experienced that if we use the three data points at ℓ = 4, ℓ = 8 and ℓ = 12 to

set f0, f1 and γ, the fits are sometimes quite poor in the sense that the value of the fit at

ℓ → ∞ does not satisfactorily cancel the quintic contact term. But in those cases, we also

observed that the value of γ chosen by the fit, is far away from 3. Let us then try to set

γ = 3 from the beginning

Cfit(ℓ) = f0 +
f1

ℓ3
(3.3)

and use the data points at ℓ = 8 and ℓ = 12 to determine f0 and f1, we have then explicitly

Cfit(∞) = f0 =
1

19
(27 C(12) − 8 C(8)) . (3.4)

The values from this fit for the marginal amplitudes of section 2, are shown in table 1;

they cancel the contact terms with a striking precision. The fit (3.3) therefore seems to

be excellent, except for the amplitudes mentioned at the beginning of this section, those

whose internal (propagating) fields are tensor products of physical (i.e. ghost number one)

twist-even open fields, whose fit we know should rather be

Cfit(ℓ) = f0 +
f1

ℓ2
. (3.5)

All in all, we conclude that a good fit of closed amplitudes C(ℓ), is (3.5) if the internal fields

are tensor products of open physical and twist-even fields, and (3.3) otherwise, and that

we should keep only the maximum available levels L and L − 4 in order to determine f0

and f1. We can thus express Cfit(∞) = f0 explicitly in terms of C(L) and C(L− 4), namely

Cfit(∞) =
Lγ C(L) − (L − 4)γ C(L − 4)

Lγ − (L − 4)γ
,

where γ =

{

2 if internal fields are ⊗ of open phys. twist-even fields

3 otherwise

(3.6)

In order to test further the fit (3.6) we redo, to level twelve, the calculation of quartic

marginal deformations that was done in [10, 11]. The results are shown in table 2. The fit

projections for Ca2d2 and Cd4 , cancel the contact terms with substantially more accuracy

than the fits [11] from level six data. This is especially interesting in the case of Ca2d2 ; had

we fitted it with (3.2) and γ = 5/2 as was done in [11], we would have found Cfit
a2d2(∞) =

– 8 –
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−0.4553, a worse result than what we find with γ = 3. The fit of Ca4 is however a little

poorer here than in [10] (where the projection was 0.2559). Note that the propagator of

this amplitude only involves fields which are tensor products of open physical twist-even

fields (this can also be seen from the fact that the values at levels 8 and 10 are the same),

and we should therefore take γ = 2. The fact that the data to level six gives a better

answer than the data to level twelve with the same functional form of fit (with γ = 2) is

probably accidental. Anyway, had we used γ = 3 we would have found Cfit
a4(∞) = 0.2575,

not as good as with γ = 2. This is thus good evidence that the choice of γ in (3.6) is right.

4. The effective potential

We are now ready to confidently calculate the effective tachyon and dilaton potential to

order five. Indeed we have shown that we can trust the quintic contact terms computations

needed, and we have a good fit at hand to extrapolate the results to infinite level. We start

with the order four (where quintic computations are not needed), which had already been

calculated in [5] to level four, but we are going to level twelve and extrapolating; we will

see that to this order, the effective potential provides unexpectedly accurate results for

the Yang-Zwiebach vacuum [5]. We will then proceed to order five and discuss the local

extrema of the potential.

We start by giving here a few definitions. The closed string field |Ψ〉 =
∑

i ψi|Ψi〉 is in

the universal Hilbert space, and is as described in [5, 8]. We again split contact term and

Feynman contribution

κ2V eff
ψ1ψ2...ψN

= κ2Vψ1ψ2...ψN
+ Cψ1ψ2...ψN

. (4.1)

And we use the following notations; Aψiψj
and Aψiψjψk

are vectors, whose components are

given by

(

Aψiψj

)

k
≡ {Ψi,Ψj ,Ψk}

(

Aψiψjψk

)

h
≡ {Ψi,Ψj ,Ψk,Ψh} , (4.2)

and Bψi
are matrices with components

(Bψi
)
jk

≡ {Ψi,Ψj ,Ψk} . (4.3)

Since the multilinear string functions are totally symmetric, Bψi
are symmetric matrices;

and it doesn’t matter in which order the index fields of A are written. At last P is the

zero-momentum propagator, a matrix given by

P = −M−1 where Mij = 〈Ψi|c
−
0 QB |Ψj〉. (4.4)

4.1 Order four

We calculate here the terms κ2V eff
dnt4−n for n = 0, . . . , 4. The manipulations are similar to

those of section 2. Since the Feynman diagrams involve only cubic vertices, only those with
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ℓ Ct4(ℓ) Ct2d2(ℓ)

4 −1896129
4194304 ≈ −0.452072 25329

16384 ≈ 1.54596

6 −1896129
4194304 ≈ −0.452072 19104841

11943936 ≈ 1.59954

8 −24710749
50331648 ≈ −0.490958 178516846189

104485552128 ≈ 1.70853

10 −24710749
50331648 ≈ −0.490958 179239681645

104485552128 ≈ 1.71545

12 −16280361760337731
32499186133893120 ≈ −0.500947 17898902809317331

10282945612677120 ≈ 1.74064

∞ −0.5089 1.754

Table 3: The Feynman contributions needed for the computation of the effective potential at order

four.

an even number of dilaton can be nonzero. For Ct4 we find

Ct4 =
i

4!

∑

i

TT

··

··

TT

t

t

t

t

ψi =
1

8
AT

ttPAtt, (4.5)

where the internal fields ψi are all the scalars except the tachyon and dilaton. And for

Ct2d2 we have

Ct2d2 =
i

4





∑

i

TT

··

··

TT

t

t

d

d

ψi +
∑

i

TT

··

··

TT

d

t

d

t

ψi



 =
1

4
AT

ttPAdd +
1

2
AT

tdPAtd. (4.6)

The results to level twelve and their extrapolations are shown in table 3.

The Feynman contribution for the term κ2V eff
d4 is not needed because we can use the

dilaton theorem

0 = @
@@¡
¡¡

d d

d d
+

∑

i

TT

··

··

TT

d

d

d

d

ψi + TT

··

··

TT

d

d

d

d

t = −4! i κ2V eff
d4 −3 i {D,D, T}

(

1

2

)

{T,D,D} , (4.7)

from which we deduce

κ2V eff
d4 = −

1

16
{D,D, T}2 = −

729

4096
≈ −0.1780. (4.8)

We now just need the contact terms (see [5] for example)

κ2Vt4 = −3.017, κ2Vt3d = 3.872, κ2Vt2d2 = 1.368, κ2Vtd3 = −0.9528. (4.9)

All in all we have for the potential at order four

κ2V eff
4 = −t2 +

6561

4096
t3 −

27

32
td2 − 3.526 t4 + 3.872 t3d + 3.122 t2d2 − 0.9528 td3 −

729

4096
d4.

(4.10)
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L 4 6 8 10 ∞

value of κ2V eff
4,L −0.05443 −0.05415 −0.05266 −0.05274 −0.05234

value of κ2VL,4L in scheme B −0.05442 −0.0544 −0.0514 −0.0513 −0.050

Table 4: Comparison of the values of the effective potential and the full potential at the nonper-

turbative vacuum of [5, 8]. The last line was calculated in section 3 of [8].

In order to judge how well it captures the vacuum structure, we will compare the

results for the local extremum found in truncation scheme B of [8] and the analog found

with the effective potential truncated to fields of level L, with L = 4, 6, 8, 10. The analogs

of (4.10) with internal fields of levels not greater than L are

κ2V eff
4,4 = − t2 +

6561

4096
t3 −

27

32
td2 − 3.469t4 + 3.872t3d + 2.914t2d2 − 0.9528td3 − 0.1390d4

κ2V eff
4,6 = − t2 +

6561

4096
t3 −

27

32
td2 − 3.469t4 + 3.872t3d + 2.968t2d2 − 0.9528td3 − 0.1673d4

κ2V eff
4,8 = − t2 +

6561

4096
t3 −

27

32
td2 − 3.508t4 + 3.872t3d + 3.077t2d2 − 0.9528td3 − 0.1678d4

κ2V eff
4,10 = − t2 +

6561

4096
t3 −

27

32
td2 − 3.508t4 + 3.872t3d + 3.083t2d2 − 0.9528td3 − 0.1750d4

(4.11)

We show in table 4, the value of the potential for the vacuum found in truncation scheme

B [8] at fields level L, compared to the values of the extrema of the potentials (4.11). We

emphasize that only the value at L = 4 of κ2VL,4L in truncation scheme B, is exact. The

other ones were obtained by extrapolating the values of κ2VL,M to M = 4L. And the value

at infinity was in turn extrapolated from the values of the last line of table 4. We see a

striking similarity between the values at fields level L = 4 (the small mismatch is within

the relative expected error made on the quartic terms, which is about 0.1%). Could these

values be exactly equal (and the mismatch of the others be due to extrapolation errors)?

We shouldn’t expect so. Indeed if we wanted to calculate the effective potential from the

potential, by solving the equations of motion for all the massive fields for fixed values of t

and d, and plug back into the potential the resulting expressions of the massive fields as

functions of t and d, we should obtain a nonpolynomial function of t and d. This function

would agree with κ2V eff
4,4 to order four, but we will have terms of higher order as well. Those

will lack the contact terms of course, but they will contain terms from Feynman diagrams

built with cubic and quartic vertices. It is instructive to compare the tachyon and dilaton

vacuum expectation values. From the effective potential V eff
4,4 we find

(t, d) = (0.3424, 0.4057), (4.12)

while from V4,16 in scheme B we find

(t, d) = (0.3265, 0.4349). (4.13)

This rules out strict equality, but these two results are not that different. We will thus

interpret the numerical values in table 4, as evidence for the following approximate conjec-

ture.
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Conjecture. The effective tachyon and dilaton potential κ2V eff
N to a given polynomial

order N , captures with good approximation the physics of the whole potential including

vertices up to order N and with all interactions from the untruncated string field.

We emphasize that this is not a precise statement as we are only stating an approximation.

This is nevertheless a strong statement; it implies in particular that at order five, we may

only calculate the contact terms κ2Vt5 , κ2Vt4d, κ2Vt3d2 , κ2Vt2d3 , κ2Vtd4 and κ2Vd5 necessary

to form the effective potential, and that we will have a good approximation of the vacuum

structure of the potential with all quintic contact terms (to fields level four there are

252 such terms, to level six there are 20, 349 of them! And then we would still need to

extrapolate to infinite level).

Before going to order five, we want to do one more thing at order four. We want to

find all extrema of the potential (4.10) and check whether they are local maxima, minima,

or saddle points. In order to do this we will look at the eigenvalues λ1 and λ2 of the matrix

S of second derivatives

S = κ2

(

∂2
t V eff ∂t∂dV

eff

∂d∂tV
eff ∂2

dV eff

)

. (4.14)

Keeping only the real nontrivial solutions (and throwing away those which are very close to

the origin and merely artifacts of truncation) we find three extrema. The one corresponding

to the Yang-Zwiebach vacuum is

(t, d) = (0.3348, 0.4005), κ2V eff
4 = −0.05234, (λ1, λ2) = (−2.192, 1.810). (4.15)

We have one negative and one positive eigenvalue, this vacuum is therefore a saddle point.

This is interesting, it means that it cannot be a true vacuum of the theory. In other words,

the theory expanded at this vacuum still has a tachyon (of mass squared λ1). What about

the other two vacua? We have one vacuum with a negative dilaton vev

(t, d) = (0.2497,−0.8229), κ2V eff
4 = −0.06062, (λ1, λ2) = (−4.236, 1.148), (4.16)

which is again a saddle point. The third vacuum has a negative tachyon vev

(t, d) = (−0.1312,−0.4829), κ2V eff
4 = −0.003062, (λ1, λ2) = (−1.967, 0.3736), (4.17)

again a saddle point. But we notice that t and λ2 are rather small, we interpret this as

this point belonging to the family of vacua generated by the dilaton deformations of the

perturbative vacuum; it is an artifact of truncation that we find only a finite number of

these vacua.

4.2 Order five

We now compute the effective potential to order five, and in the light of the last section

we hope that it may give us a good insight into the vacuum structure of the theory. We

start by calculating the Feynman contributions

Ct5 =
i

5!





∑

i

··

TT

t
t

t

t

t

ψi +
∑

i,j

TT

··

··

TT

t

t t

t

t

ψi ψj



 =
1

12
AT

tttPAtt +
1

8
AT

ttPBtPAtt (4.18)
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ℓ Ct5(ℓ) Ct4d(ℓ) Ct3d2(ℓ) Ct2d3(ℓ) Ctd4(ℓ)

4 3.79575 −1.55833 −7.51218 3.17206 1.05369

6 3.79575 −1.61549 −8.15761 3.41664 1.33655

8 4.17801 −1.73714 −8.80564 3.59308 1.54958

10 4.17801 −1.74333 −8.89440 3.61552 1.62033

12 4.27270 −1.77456 −9.03854 3.65374 1.66610

∞ 4.348 −1.790 −9.137 3.679 1.715

Table 5: The Feynman contributions to the order five of the effective potential, and their extrap-

olations to infinite level using the fit (3.6).

κ2Vt5 κ2Vt4d κ2Vt3d2 κ2Vt2d3 κ2Vtd4

9.924 ± 0.008 −20.613 ± 0.026 4.702 ± 0.021 6.769 ± 0.021 −0.8077 ± 0.0036

Table 6: The quintic contact terms needed at the order five of the effective potential. Details on

their computation can be found in appendix A.

Ct4d =
i

24

∑

i



 ··

TT

d
t

t

t

t

ψi + ··

TT

t
t

t

d

t

ψi



 =
1

4
AT

ttdPAtt +
1

6
AT

tttPAtd (4.19)

Ct3d2 =
i

12

∑

i



 ··

TT

d
d

t

t

t

ψi + ··

TT

d
t

t

d

t

ψi + ··

TT

t
t

t

d

d

ψi





+
i

12

∑

ij



 TT

··

··

TT

d

d t

t

t

ψi ψj + TT

··

··

TT

d

t t

d

t

ψi ψj + TT

··

··

TT

d

t d

t

t

ψi ψj





=
1

4
AT

tddPAtt +
1

2
AT

ttdPAtd +
1

12
AT

tttPAdd

+
1

4
AT

ddPBtPAtt +
1

2
AT

tdPBtPAtd +
1

2
AT

tdPBdPAtt (4.20)

Ct2d3 =
i

12

∑

i



 ··

TT

t
t

d

d

d

ψi + ··

TT

t
d

d

t

d

ψi + ··

TT

d
d

d

t

t

ψi





=
1

4
AT

ttdPAdd +
1

2
AT

tddPAtd +
1

12
AT

dddPAtt (4.21)

Ctd4 =
i

24

∑

i



 ··

TT

t
d

d

d

d

ψi + ··

TT

d
d

d

t

d

ψi



 +
i

24

∑

ij



 TT

··

··

TT

t

d d

d

d

ψi ψj + TT

··

··

TT

d

d t

d

d

ψi ψj





=
1

4
AT

tddPAdd +
1

6
AT

dddPAtd +
1

2
AT

tdPBdPAdd +
1

8
AT

ddPBtPAdd. (4.22)

The results are shown in table 5.

The corresponding contact terms are computed with the program described in [9], and

shown in table 6. The details are explained in appendix A. For the term κ2V eff
d5 we can
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again use the dilaton theorem to write

0= ½½BB

££
ZZ

d

d
d

d
d

+
∑

i

··

TT

d
d

d

d

d

ψi + ··

TT

d
d

d

d

d

t =−5!iκ2V eff
d5 −10i{D,D,D, T}

(

1

2

)

{T,D,D},

(4.23)

and thus

κ2V eff
d5 = −

1

24
{D,D,D, T} {T,D,D} = −0.4020. (4.24)

And finally we can write down the effective potential at order five

κ2V eff
5 = −t2 +

6561

4096
t3 −

27

32
td2 − 3.526t4 + 3.872t3d + 3.122t2d2 − 0.9528td3 −

729

4096
d4

+14.27t5 − 22.40t4d − 4.435t3d2 + 10.45t2d3 + 0.9073td4 − 0.4020d5
.

(4.25)

We can now do the same vacuum search as we did to order four. This time we find

five real nontrivial extrema. The one corresponding to the Yang-Zwiebach vacuum is

(t, d) = (0.2105, 0.4582), κ2V eff
5 = −0.03322, (λ1, λ2) = (−2.311, 1.870). (4.26)

In addition to this one, we find three other saddle points

(t, d) = (0.2676,−0.1185), κ2V eff
5 = −0.03662, (λ1, λ2) = (−0.5878, 4.594)

(t, d) = (0.9881, 0.8575), κ2V eff
5 = 0.06579, (λ1, λ2) = (−3.112, 82.48)

(t, d) = (−0.4221,−0.5721), κ2V eff
5 = −0.07998, (λ1, λ2) = (−9.067, 2.848). (4.27)

But we now have a minimum

(t, d) = (0.4907, 0.3978), κ2V eff
5 = −0.08245, (λ1, λ2) = (0.9509, 8.841). (4.28)

Before we discuss these results in section 6, we try the usual level truncation scheme

in the next section.

5. Usual level truncation

In this section we want to address the question of tachyon condensation in the level trun-

cation by looking for extrema of the potential itself (not the effective potential). There

are two main approaches to level truncation, which were denoted schemes A and B respec-

tively in [8]. Here, the analog of scheme A would be to expand the string field to a large

given level and include as many cubic and quartic interactions as possible, we would then

include quintic interactions level by level. In scheme B, we would increase the level of the

string field step by step, and include all the cubic, quartic and quintic interactions. In [8]

it was seen that convergence is better in scheme B, but the computations of all quartic

interactions was a challenge that could be completely achieved only to string field level

four. Here the quintic term is, of course, even more challenging. At level two, the result

is essentially included in the effective potential discussed in section 4. At level four, we
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κ2Vt4f1
κ2Vt4f2

κ2Vt4f3
κ2Vt4g1

0.4059 ± 0.0046 244.98 ± 0.48 −50.43 ± 0.10 −3.9353 ± 0.0068

Table 7: The contact terms of four tachyons and one field of level four.

Potential t d f1 f2 f3 g1 Value

κ2
V

(4)
4,16 0.3265 0.4349 −0.1221 −0.008973 −0.03845 −0.09332 −0.05442

κ2
V

(5)
0 0.2600 0.2373 −0.04735 −0.004174 −0.01530 −0.03555 −0.03281

κ2
V

(5)
2 0.2423 −0.3718 −0.009011 0.0001399 −0.003029 0.02344 −0.03802

κ2
V

(5)
4 0.1588 −0.6072 −0.04073 −0.0005148 −0.01074 0.03996 −0.02629

Table 8: The extremum of the potential found in the level truncation scheme A.

would need to include all quintic terms up to total level twenty (a total of 252 terms); this

is beyond the scope of this work. We will therefore focus on scheme A in this section.

We will truncate the string field to level four, namely

|Ψ〉 = t c1c̄1|0〉 + d (c1c−1 − c̄1c̄−1)|0〉 + f1 c−1c̄−1|0〉 + f2 L−2c1L̄−2c̄1|0〉

+ f3 (L−2c1c̄−1 − L̄−2c̄1c−1)|0〉 + g1 (b−2c1c̄−2c̄1 − b̄−2c̄1c−2c1)|0〉, (5.1)

and we will include all the cubic and quartic interactions, and the quintic interactions at

levels zero, two and four. We will therefore need the quintic contact terms κ2Vt5 , κ2Vt4d and

κ2Vt3d2 (see table 6) and the terms κ2Vt4f1
, κ2Vt4f2

, κ2Vt4f3
and κ2Vt4g1

shown in table 7.

The details of these computations can be found in appendix A. The quintic potentials

at each level are thus

κ2V
(5)
0 = 9.924 t5

κ2V
(5)
2 = −20.61 t4d (5.2)

κ2V
(5)
4 = 4.702 t3d2 + t4 (0.4059 f1 + 245.0 f2 − 50.43 f3 − 3.935 g1) .

And the total potentials are

V
(5)
0 = V

(4)
4,16 + V

(5)
0

V
(5)
2 = V

(5)
0 + V

(5)
2 (5.3)

V
(5)
4 = V

(5)
2 + V

(5)
4 ,

where V
(4)
4,16 contains all the quadratic, cubic, and quartic terms of fields of level up to four

(and thus contains interactions of level up to sixteen). We now look for a minimum of

these potentials corresponding to the Yang-Zwiebach vacuum. In order to do this, we solve

numerically the equations with a start value (a seed) corresponding to this vacuum. The

results are shown in table 8.

We see that this vacuum is destroyed after we include the term of level two V
(5)
2 .

Instead, a local extremum is found at a negative value of the dilaton. We have done
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the same calculation with V
(5)
0 = V

(4)
10,10 + V

(5)
0 , i.e. using fields up to level ten and with

cubic interactions up to level 24 and quartics interaction up to level ten; and we found

qualitatively the same results as in table 8. So the breakdown of the solution is really due

to the quintic terms. We found another extremum to the potential V
(5)
4 of (5.3), namely

(t, d) = (−0.2031,−0.5240), κ2
V

(5)
4 = −0.01152. (5.4)

It is important to note that none of the extrema, (5.4) or the one in table 8, correspond

to any extremum of the effective potential of section 4.

6. Conclusions and prospects

In this paper we have shown that we are able to correctly compute quintic contact terms

when the interacting fields are not all the same. This was shown by verifying, to order

five, that the dilaton and one exactly marginal field form a moduli space of marginal

deformations. We then used this data to motivate a universal fit which gives very good

approximations for all the verifiable amplitudes that we have computed. This fit was then

used in the computation of the tachyon and dilaton effective potential. At order four, we

noticed that the extrema from this effective potential were very close (more than expected)

to the extrema found from the potential with many terms. We phrased this nice apparent

property as a conjecture.

Since it is only an approximate statement, we will interpret our conjecture as a state-

ment on level truncation. In other words it tells us that when including the vertex of order

N , one should first include the terms κ2VtndN−n which will be the most important contri-

butions, and then include all the terms with level four fields, and so on. This is different

from usual truncation as, for example, some terms of level 2N are included before some

terms of level 4. It would be interesting to check such a truncation scheme in a different

context, like tachyons on orbifolds (see [14] for example).

It is a little bit surprising that, at order five, the vacua found from the effective potential

do not agree with those found in the usual level truncation scheme A. If we do believe our

conjecture, we shall give more credence to the results from the effective potential. This

is especially reasonable since we went only to level four in the usual truncation scheme.

We will take this point of view, and not discuss further the results from usual truncation,

except to say that it would of course be interesting to include terms of higher levels.

Of all the saddle points found from the effective potential, only one seems physically

meaningful. Indeed the solutions (4.27) have no equivalent at order four; and similarly

the saddle points (4.16) and (4.17) have no analog at order five. The Yang-Zwiebach

vacuum (4.15), however, survives to order five; moreover the eigenvalues λi are stable from

order four to order five. This is evidence that this vacuum is physical, present in the full

untruncated theory. The value of the potential at this vacuum goes from −0.05234 at order

four to −0.03322 at order five. This is certainly compatible with the conjecture [5] that it

should be zero. On the other hand, one might be concerned by the fact that the vacuum

expectation value of the tachyon goes from 0.3348 at order four to 0.2105 at order five. Is

this vacuum simply going to converge to a dilaton deformation of the perturbative vacuum
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to higher order? One of the eigenvalues λi should then tend to zero, but this is clearly

not the case, as can be seen from (4.15) and (4.26). We are thus led to claim that this

vacuum is physically interesting. As to its interpretation, the shallowness of the potential

certainly supports the interpretation from the low-energy effective action [5, 7] that the

universe ends in a big crunch there. But the fact that the Yang-Zwiebach vacuum is not

a local minimum but a saddle point certainly raises new questions. On the one hand, one

could argue that the big crunch interpretation is so drastic that it doesn’t matter that we

are not on a stable point. It is even tempting to imagine that the remaining instability

could bring the system back to its original perturbative vacuum, and that the universe

would thus undergo an infinite cycle of big crunches and big bangs, like in cyclic universe

models [15]. On the other hand, one might wonder whether the system will ever reach the

saddle point. Indeed, even if the system starts rolling approximately towards it, it seems

natural that it will eventually turn to the downward direction and miss it.

But in this paper we have found a local minimum as well (4.28), a very interesting

result as it suggests the existence of a stable nonperturbative vacuum. This is found only

at order five and has no analog at lower order, it is thus hard to say at this point whether

this is a physical result or just an effect of truncation. As for its physical interpretation,

it is as hard to say. We can nevertheless note that it has a positive tachyon vev - what we

naively expect from a vacuum since negative tachyon values correspond to the unbounded

side of the potential at cubic order. It has also a positive dilaton vev, corresponding to

large string coupling as argued in [7, 5]. Some clue could be given by the second derivatives

of the potentials (the eigenvalues λ1 and λ2) which should correspond to the mass squared

of two particles found in this vacuum. Those are respectively approximately 1 and 9 (in

units where α′ = 2).

There are several directions in which the present work could be continued. In par-

ticular, more quintic contact terms could be computed. This could in particular allow to

check our conjecture, and see if the Yang-Zwiebach vacuum is restored in the usual level

truncation after including more terms. If we want to continue the direct search of a non-

perturbative vacuum, however, it seems very desirable to be able to make computations at

order six. An extension of [9] to the sixtic term, however, would require tremendous work

and very strong programming skills. Other approaches should be considered. Progress

on the analytical side would be of course extremely important, but a different numerical

approach might be the way to go. For example, if we remember that the most compli-

cated part in the contact term computation [9] was the computation of the boundary of

the reduced moduli space, a natural suggestion is to integrate over the whole moduli space

instead. We would thus produce effective terms (which is good if we believe our conjec-

ture); but we would encounter divergences as well, coming from the propagator of the

zero-momentum dilaton. It would therefore be very interesting to find a way to deal with

these divergences (Belopolsky managed to do this at order four [4]).
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A. Quintic contact terms

We collect here the technical results needed to compute the quintic contact terms needed

in this paper. All the closed string correlators are given explicitly. Their integration over

the moduli space was done with the program developed in [9]; for more details the reader

should consult this reference.

A.1 Integration over the reduced moduli space

We begin by recalling how to integrate over the reduced moduli space of spheres with five

punctures V0,5. It was shown in [9] that this space can be divided into 120 pieces and that

the integration can be written as an integration over one single piece A5. The five-string

multilinear function reads

{Ψ1,Ψ2,Ψ3,Ψ4,Ψ5} =
1

π2

∫

V0,5

dx1dy1dx2dy2〈Σ| (BB⋆)1 (BB⋆)2 |Ψ1〉|Ψ2〉|Ψ3〉|Ψ4〉|Ψ5〉,

(A.1)

where the antighost insertions (BB⋆)i are given by

Bi =

5
∑

I=1

∞
∑

m=−1

(

BI
i,mb(I)

m + CI
i,mb̄(I)

m

)

, B⋆
i =

5
∑

I=1

∞
∑

m=−1

(

CI
i,mb(I)

m + BI
i,mb̄(I)

m

)

(A.2)

B
(I)
i,m =

∮

dw

2πi

1

wm+2

1

h′
I

∂hI

∂ξi
, C

(I)
i,m =

∮

dw

2πi

1

wm+2

1

h′
I

∂hI

∂ξ̄i

, (A.3)

with hI being the maps from the local coordinates wI at the puncture I to the uniformizer

z on the sphere

z = hI(wI ; ξ1, ξ̄1, ξ2, ξ̄2) = zI + ρIwI + ρ2
IβIw

2
I + ρ3

IγIw
3
I + O(w4

I ). (A.4)

All the coefficients in the right-hand side depend on the complex numbers ξ1 = x1+iy1 and

ξ2 = x2 + iy2 that parameterize the five-punctured spheres, and the zI are the punctures,

where the states are inserted, z1 = 0, z2 = 1, z3 = ξ1, z4 = ξ2. The fifth puncture is at

z = ∞ and there we should use the coordinate t = 1/z

t = h5(w5; ξ1, ξ̄1, ξ2, ξ̄2) = ρ5w5 + ρ2
5β5w

2
5 + ρ3

5γ5w
3
5 + O(w4

5). (A.5)

All these coefficients can be expressed in terms of the quadratic differential defining the

geometry of the punctured sphere, which can in turn be expressed numerically in terms of

ξ1 and ξ2 (see [9]).

In [9], the five states |Ψi〉 in (A.1) where the same and the integral could simply be

written as 120 times the integral of the same function over A5. We now want to deal with

the case where the states |Ψi〉 are different. We start by defining

F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5) ≡ 〈Σ| (BB⋆)1 (BB⋆)2 |Ψ1〉|Ψ2〉|Ψ4〉|Ψ5〉|Ψ3〉. (A.6)
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Note how we have separated the states Ψ4 and Ψ5 from the other ones. These are inserted

on the punctures z = ξ1 and z = ξ2 respectively. The construction of the reduced moduli

space done in [9] was such that these punctures always are on triangular faces of the

interaction polyhedron, whereas the other three punctures z = 0, z = 1 and z = ∞ are

always on quadrilateral faces. This is convenient because it makes visible the symmetry

under the six PSL(2, Z) maps that permute the points 0, 1 and ∞. It will be convenient

to explicitly name these maps

s1(z) = z, s2(z) =
1

z
, s3(z) = 1−z, s4(z) =

1

1−z
, s5(z) =

z−1

z
, s6(z) =

z

z−1
.

(A.7)

We can then write
∫

V0,5

dx1dy1dx2dy2〈Σ| (BB⋆)1 (BB⋆)2 |Ψ1〉|Ψ2〉|Ψ3〉|Ψ4〉|Ψ5〉 =

=

6
∑

i=1

(

∫

si(A5)
+

∫

si(A5)

)

(

F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5) + permutations
)

dx1dy1dx2dy2, (A.8)

where the permutations denote the ten different ways of assigning three states to the first

three arguments of F regardless of order. In other words those are the ten different ways of

assigning three states to the quadrilateral faces. The integrals over the complex conjugates

si(A5) can be easily related to the integrals over si(A5) after we note that the parameters

ai of the quadratic differentials (see [9]) obey ai(ξ1, ξ2) = ai(ξ1, ξ2), i = 1, 2. We simply

have
∫

si(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2 =

∫

si(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2.

And since our states always obey the reality condition, we have F = F on the Hilbert

spaces we are considering in this paper. Thus

∫

si(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2 =

∫

si(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2.

(A.9)

For (A.8) to make sense we still need to show that the order of the first three arguments

and the order of the last two arguments do not matter in the expression

6
∑

i=1

∫

si(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2.

To show that, we first remind that, in [9], we defined the space V
{0,1,∞}
0,5 to be the subspace

of V0,5 for which the punctures at 0, 1 and ∞ are on quadrilateral faces. It can be written

V
{0,1,∞}
0,5 =

6
⋃

i=1

(

si(A5) ∪ si(A5)
)

. (A.10)
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From its definition, this space is obviously symmetric under the exchange ξ1 ↔ ξ2, which

corresponds to the exchange of the last two arguments of F . Therefore we have, using (A.9)

and (A.10)

6
∑

i=1

∫

si(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2 =

6
∑

i=1

∫

si(A5)
F (Ψ1,Ψ2,Ψ3|Ψ5,Ψ4)dx1dy1dx2dy2.

(A.11)

At last, the integrations over si(A5) can be written as integrals over A5 after permutations

of the first three punctures. Namely
∫

s2(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2 =

∫

A5

F (Ψ3,Ψ2,Ψ1|Ψ4,Ψ5)dx1dy1dx2dy2

∫

s3(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2 =

∫

A5

F (Ψ2,Ψ1,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2

∫

s4(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2 =

∫

A5

F (Ψ2,Ψ3,Ψ1|Ψ4,Ψ5)dx1dy1dx2dy2

∫

s5(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2 =

∫

A5

F (Ψ3,Ψ1,Ψ2|Ψ4,Ψ5)dx1dy1dx2dy2

∫

s6(A5)
F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5)dx1dy1dx2dy2 =

∫

A5

F (Ψ1,Ψ3,Ψ2|Ψ4,Ψ5)dx1dy1dx2dy2

(A.12)

Now from (A.1), (A.8), (A.9), (A.11) and (A.12) we can simply write

{Ψ1,Ψ2,Ψ3,Ψ4,Ψ5} =
1

π2

∑

σ∈S5

∫

A5

F (Ψσ(1),Ψσ(2),Ψσ(3)|Ψσ(4),Ψσ(5))dx1dy1dx2dy2,

(A.13)

where we sum over all the 120 elements of the permutation group S5 of five elements. This

is the most symmetric way of writing the multilinear function as an integral over A5. We

now want to specialize this formula for the two special cases encountered in this paper,

when we have only two different kinds of states.

Now assume that we have Ψ1 = . . . = Ψ4 = Φ and Ψ5 = Ψ. From (A.13) we can write

κ2Vφ4ψ =
1

24
{Ψ,Φ,Φ,Φ,Φ} =

1

π2

∫

A5

(

F (Ψ,Φ,Φ|Φ,Φ)+F (Φ,Ψ,Φ|Φ,Φ)+F (Φ,Φ,Ψ|Φ,Φ)

+F (Φ,Φ,Φ|Ψ,Φ)+F (Φ,Φ,Φ|Φ,Ψ)
)

dx1dy1dx2dy2.

(A.14)

From (A.11) and (A.12), we have that

∫

A5

F (Φ,Φ,Φ|Ψ,Φ)dx1dy1dx2dy2 =

∫

A5

F (Φ,Φ,Φ|Φ,Ψ)dx1dy1dx2dy2, (A.15)

Introducing the definition

F
(I)
φ4ψ

≡ 〈Σ| (BB⋆)1 (BB⋆)2 |Ψ
(I)Φ(J)Φ(K)Φ(L)Φ(H)〉 (A.16)
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where the state Ψ is inserted on the puncture I, and the Φ’s are inserted on the other four

punctures J , K, L and H. We can now write

κ2Vφ4ψ =
1

π2

∫

A5

(

F
(1)
φ4ψ

+ F
(2)
φ4ψ

+ F
(5)
φ4ψ

+ 2F
(3)
φ4ψ

)

dx1dy1dx2dy2. (A.17)

This is not the most symmetric way to write the amplitude, but it involves less different

functions F
(I)
φ4ψ

, which are quite long expressions that take time to calculate.

Next we assume that Ψ1 = . . . = Ψ3 = Φ and Ψ4 = Ψ5 = Ψ. This time we have

κ2Vφ3ψ2 =
1

12
{Ψ,Ψ,Φ,Φ,Φ} . (A.18)

Again we can use (A.11) to reduce a little bit the number of different functions in the

integral, noting that

∫

A5

(F (Ψ,Φ,Φ|Ψ,Φ) + F (Φ,Ψ,Φ|Ψ,Φ) + F (Φ,Φ,Ψ|Ψ,Φ)) dx1dy1dx2dy2 =

=

∫

A5

(F (Ψ,Φ,Φ|Φ,Ψ) + F (Φ,Ψ,Φ|Φ,Ψ) + F (Φ,Φ,Ψ|Φ,Ψ)) dx1dy1dx2dy2.

Extending the definition (A.16) with

F
(IJ)
φ3ψ2 ≡ 〈Σ| (BB⋆)1 (BB⋆)2 |Ψ

(I)Ψ(J)Φ(K)Φ(L)Φ(H)〉, (A.19)

where the two states Ψ are inserted at the punctures I and J and the states Φ are inserted

at the other three punctures K, L and H, we find

κ2Vφ3ψ2 =
1

π2

∫

A5

(

F
(12)
φ3ψ2 +F

(15)
φ3ψ2 +F

(25)
φ3ψ2 +F

(34)
φ3ψ2 +2F

(13)
φ3ψ2 +2F

(23)
φ3ψ2 +2F

(53)
φ3ψ2

)

dx1dy1dx2dy2.

(A.20)

A.2 Contact terms of tachyons and dilatons

We now list the results for the functions F that we used in this paper. The results of the

integrations are shown in tables 1, 6 and 7. We start with the terms with tachyons and

dilatons. The five-tachyon and five-dilaton terms were calculated in [9] so we don’t repeat

them here. We will need the following open ghost correlators

AIJ ≡ 〈(c−1c1)
(I), c

(J)
−1 〉o , BIJ ≡ 〈(c−1c1)

(I), c
(J)
1 〉o (A.21)

CIJK ≡ 〈c
(I)
1 , c

(J)
1 , c

(K)
1 〉o , DIJK ≡ 〈c

(I)
−1, c

(J)
1 , c

(K)
1 〉o , EIJK ≡ 〈c

(I)
−1, c

(J)
−1 , c

(K)
1 〉o.

Expressed in terms of the coefficients in the maps expansions (A.4) and (A.5), these are
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(defining zIJ ≡ zI − zJ and ǫI ≡ 8β2
I − 6γI)

AIJ = ρJ

(

βJ − βI − 2βIβJzIJ +
1

2
ǫJzIJ(1 − βIzIJ)

)

, A5J = ρJ

(

1

2
ǫJ(β5 + zJ) − βJ

)

BIJ =
1

ρJ
zIJ(1 − βIzIJ), BI5 =

βI

ρ5
, B5J =

1

ρJ
(zJ + β5)

CIJK =
1

ρIρJρK
zIJzIKzJK , CIJ5 =

zJI

ρIρJρ5

DIJK =
ρI

ρJρK

(

zJK−βI(zIK +zIJ)zJK +
1

2
ǫIzIJzJKzIK

)

, DIJ5 =
ρI

ρJρ5

(

βI−
1

2
ǫIzIJ

)

,

D5IJ =
ρ5

ρIρJ

zJI

(

zIzJ + β5(zI + zJ) +
ǫ5

2

)

EIJK =
ρIρJ

ρK

(

βI − βJ + βIβJ(zIJ + zIK − zJK) +
1

2
ǫJzJK −

1

2
βIǫJ(zIJ + zIK)zJK+

+
1

2
ǫI

(

−zIK + βJzIK(zJK − zIJ) +
1

2
ǫJzIJzIKzJK

))

,

EIJ5 =
ρIρJ

ρ5

(

1

2
βIǫJ −

1

2
ǫIβJ −

1

4
ǫIǫJzIJ

)

, (A.22)

and it is understood that I, J,K 6= 5. We can now present the results for the closed

correlators.

Four tachyons and one dilaton.

F
(3)
t4d

= 4Re

(

C3
1,1

ρ2
1ρ

2
2ρ3ρ2

4ρ
2
5

)

(A.23)

F
(I)
t4d

= 4Re

(

CIJK

ρ3ρ4

(

CI
2,1CJ4K

ρ3
+

CI
1,1CJ3K

ρ4

))

, I 6= J 6= K 6= 3 6= 4. (A.24)

Note that we are giving a transitive meaning to the inequality sign. So for example, by

I 6= J 6= K 6= 3 6= 4 we really mean that I, J and K are pairwise distinct and that none

of them is equal to 3 or 4. For a given I, there are two possible choices of J and K in

equation (A.24), but they give the same result because the right-hand side of (A.24) is

manifestly invariant under J ↔ K.

Three tachyons and two dilatons.

F
(34)
t3d2 =4

|C125|
2

ρ3ρ4
Re

{

C3
1,1C

4
2,1 − C4

1,1C
3
2,1 + C3

1,1C
4
2,1 − B4

1,1B
3
2,1

}

(A.25)

F
(I3)
t3d2 =2Re

∑

J,K

J 6=K 6=I 6=36=4

{

CIJK

(

CJ4K

ρ3ρ4

(

C3
1,1C

I
2,1 − CI

1,1C
3
2,1 + C3

1,1C
I
2,1 − BI

1,1B
3
2,1

)

+
CJ3K

ρ2
4

(

CI
1,1C

3
1,1 − B3

1,1B
I
1,1

)

−
D3JK

ρ3ρ
2
4

BI
1,1

)}

, I 6= 3, 4 (A.26)
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F
(JK)
t3d2 =4Re

{

1

ρ3ρ4

(

CJ
1,1C

K
2,1 − CK

1,1C
J
2,1

)

CIJKCI34 +
1

ρ2
3ρ

2
4

BKIBJI

−
1

ρ2
3ρ4

(

BK
2,1BJICI4K − BJ

2,1CIJ4BKI

)

+
1

ρ3ρ2
4

(

BJ
1,1CIJ3BKI − BK

1,1BJICI3K

)

−
1

ρ2
3

(

BJ
2,1B

K
2,1 − CK

2,1C
J
2,1

)

CIJ4CI4K −
1

ρ2
4

(

BJ
1,1B

K
1,1 − CK

1,1C
J
1,1

)

CIJ3CI3K

−
1

ρ3ρ4

(

BK
1,1B

J
2,1 − CJ

1,1C
K
2,1

)

CIJ4CI3K

−
1

ρ3ρ4

(

BJ
1,1B

K
2,1 − CK

1,1C
J
2,1

)

CIJ3CI4K

}

, I 6= J 6= K 6= 3 6= 4. (A.27)

Two tachyons and three dilatons.

F
(34)
t2d3 =4Re

∑

I 6=J 6=K 6=36=4

{

1

ρ3ρ4
CI

1,1

(

BJ
2,1BKICJ34 − BJ

2,1BK3CIJ4

)

+
1

ρ3ρ4
CI

2,1

(

BJ
1,1BKICJ43−BJ

1,1BK4CIJ3

)

+
1

ρ3
CIJ4C34K

(

CI
1,1M

JK
2 +CJ

2,1B
I
2,1B

K
1,1

)

+
1

ρ4
CIJ3C43K

(

CI
2,1M

JK
1 +CJ

1,1B
I
1,1B

K
2,1

)

−
1

ρ3ρ4

(

1

ρ4
CI

1,1BJIBK3+
1

ρ3
CI

2,1BJIBK4

)

+
1

ρ2
4

BI
1,1C

J
1,1CIJ3BK3 +

1

ρ2
3

BI
2,1C

J
2,1CIJ4BK4

}

(A.28)

F
(JK)
t2d3 =4Re

{

CIJK

{

1

ρ3ρ4

(

C4
1,1B

I
2,1−C4

2,1B
I
1,1

)

D3JK−
1

ρ3ρ4

(

C3
1,1B

I
2,1−C3

2,1B
I
1,1

)

D4JK

+
1

ρ3

(

C4
1,1

(

B3
2,1B

I
2,1 − C3

2,1C
I
2,1

)

− C3
1,1

(

B4
2,1B

I
2,1 − C4

2,1C
I
2,1

)

−BI
1,1

(

B3
2,1C

4
2,1 − B4

2,1C
3
2,1

)

)

CJ4K

+
1

ρ4

(

C3
2,1

(

B4
1,1B

I
1,1 − C4

1,1C
I
1,1

)

− C4
2,1

(

B3
1,1B

I
1,1 − C3

1,1C
I
1,1

)

−BI
2,1

(

B4
1,1C

3
1,1 − B3

1,1C
4
1,1

)

)

CJ3K

+
1

ρ3

(

CI
1,1

(

B4
2,1B

3
2,1 − C4

2,1C
3
2,1

)

− C3
1,1

(

B4
2,1B

I
2,1 − C4

2,1C
I
2,1

)

−B4
1,1

(

B3
2,1C

I
2,1 − BI

2,1C
3
2,1

))

CJ4K

+
1

ρ4

(

CI
2,1

(

B3
1,1B

4
1,1 − C3

1,1C
4
1,1

)

− C4
2,1

(

B3
1,1B

I
1,1 − C3

1,1C
I
1,1

)

−B3
2,1

(

B4
1,1C

I
1,1 − BI

1,1C
4
1,1

))

CJ3K +
1

ρ3ρ4

(

CI
1,1B

3
2,1 − C3

1,1B
I
2,1

)

D4JK

+
1

ρ3ρ4

(

CI
2,1B

4
1,1 − C4

2,1B
I
1,1

)

D3JK

}}

, I 6= J 6= K 6= 3 6= 4 (A.29)

– 23 –



J
H
E
P
0
9
(
2
0
0
7
)
1
1
8

F
(I3)
t2d3 =4Re

{

∑

J,K,L
J 6=K 6=L6=36=I

{

1

ρ3
CJKIC3IL

(

CJ
1,1M

KL
2 +CK

2,1B
J
2,1B

L
1,1

)

+
1

ρ2
3

BJ
2,1C

K
2,1CJKIBLI

}

+
1

ρ4

∑

J,K

J 6=K 6=I 6=36=4

{

(

CJ
2,1

(

B4
1,1B

K
1,1 − C4

1,1C
K
1,1

)

− C4
2,1

(

BJ
1,1B

K
1,1 − CJ

1,1C
K
1,1

)

−BK
2,1

(

B4
1,1C

J
1,1 − BJ

1,1C
4
1,1

)

)

CIJ3CKI3 +
1

ρ2
3

(

C4
2,1BJI + CJ

2,1D4IJ

)

BKI

+
1

ρ3

(

B4
1,1C

K
2,1 − BK

1,1C
4
2,1

)

CI3KBJI +
1

ρ3

(

BJ
1,1C

4
2,1 − BJ

2,1C
4
1,1

)

CIJ3BKI

+
1

ρ3

(

BJ
1,1C

K
2,1 − BJ

2,1C
K
1,1

)

CIJ3D4IK +
1

ρ3
CJ

1,1B
K
2,1CIJKD4I3

}

}

, I 6= 3, 4.

(A.30)

One tachyon and four dilatons.

F
(3)
td4 =4Re

{

∑

I 6=J 6=K 6=L6=3

{

1

2ρ2
3

M IJ
2 BKIBLJ +

1

ρ3

(

CI
1,1B

J
2,1C

K
2,1 + BJ

1,1M
IK
2

)

BLICJ3K

−
1

ρ3
CI

1,1B
J
2,1C

K
2,1BL3CIJK +BI

1,1C
J
1,1B

K
2,1C

L
2,1CIJ3C3KL+

1

2
M IJ

1 MKL
2 CI3KCJ3L

}

+
∑

I 6=J 6=K 6=36=4

{

−
1

ρ2
3ρ4

BI
2,1AJ4BKI +

1

ρ3ρ4

(

CI
1,1C

J
2,1 − BJ

1,1B
I
2,1

)

BKID4J3

+
1

ρ3ρ4

((

B4
1,1B

J
2,1+C4

1,1C
J
2,1−CJ

1,1C
4
2,1−CJ

1,1C
4
2,1

)

BIJBK3−CI
1,1C

J
2,1BK3D4IJ

)

+
1

ρ3ρ4
BI

1,1B
J
2,1AK4CIJ3 +

1

ρ4
BI

1,1C
J
1,1CIJ3

(

CK
2,1D43K + C4

2,1BK3

)

+
1

ρ4

(

BI
1,1C

J
1,1C

4
2,1 − BI

1,1C
4
1,1C

J
2,1 + B4

1,1C
I
1,1C

J
2,1

)

CIJ3BK3

+
1

ρ4

(

−M IJ
1 BK

2,1D4I3CJ3K + M4J
1 BK

2,1BI3CJ3K

)

}

}

(A.31)

F
(I)
td4 =4Re

{

1

ρ4

∑

J,K,L

J 6=K 6=L6=I 6=4

{

BJ
1,1C

K
11CJKI

(

CL
2,1D4IL + C4

2,1BLI

)

− MJK
1 BL

2,1D4JICKIL

+ M4K
1 BL

2,1BJICKIL +
(

BJ
1,1C

K
1,1C

4
2,1 − BJ

1,1C
4
1,1C

K
2,1 + B4

1,1C
J
1,1C

K
2,1

)

CJKIBLI

}

+
∑

J,K,L,H

J 6=K 6=L6=H 6=I

{

BJ
1,1C

K
1,1B

L
2,1C

H
2,1CJKICILH +

1

2
MJK

1 MLH
2 CJILCKIH

}

+
1

ρ3ρ4

∑

J,K
J 6=K 6=I 6=36=4

{

(

CJ
1,1C

K
2,1 − BJ

2,1B
K
1,1

)

D3IJD4IK + BJ
1,1B

K
2,1E34ICIJK

+
(

C3
1,1C

K
2,1 − B3

2,1B
K
1,1 + C3

1,1C
K
2,1 − C3

2,1C
K
1,1

)

D4IKBJI

+
(

C4
2,1C

K
1,1 − B4

1,1B
K
2,1 + C4

2,1C
K
1,1 − C4

1,1C
K
2,1

)

D3IKBJI

– 24 –



J
H
E
P
0
9
(
2
0
0
7
)
1
1
8

+
(

C4
2,1C

3
1,1 − B4

1,1B
3
2,1 + C4

2,1C
3
1,1 − C4

1,1C
3
2,1

)

BJIBKI

}

+
1

ρ3

∑

J,K,L
J 6=K 6=L6=I 6=3

CIKL

{

(

CJ
1,1B

K
2,1C

L
2,1 + BK

1,1M
JL
2

)

D3IJ +
(

C3
1,1B

K
2,1C

L
2,1 + BK

1,1M
3L
2

+ C3
1,1B

K
2,1C

L
2,1 − CK

1,1B
3
2,1C

L
2,1 − CL

1,1B
K
2,1C

3
2,1

)

BJI

}

}

, I 6= 3, 4 (A.32)

The results of the integrations are shown in table 6.

A.3 Contact terms of dilatons and marginal fields

Since the ghost part of the marginal state |A〉, defined in (2.2), is that of a tachyon, and

because the correlators factorize into ghost and matter parts, we can recycle the results of

correlators of tachyons and dilatons. We just need to calculate the matter correlators. For

the correlators of two marginals and three dilatons, we have

F
(IJ)
a2d3 = F

(IJ)
t2d3

∣

∣

∣〈〈α
(I)
−1α

(J)
−1 〉〉o

∣

∣

∣

2
, I, J = 1, . . . , 5, (A.33)

where the open matter correlators 〈〈. . .〉〉o are

〈〈α
(I)
−1α

(J)
−1 〉〉o =

ρIρJ

zJI
, 〈〈α

(I)
−1α

(5)
−1〉〉o = −ρIρ5, I, J = 1, . . . , 4. (A.34)

And for the correlators of four marginal fields and one dilaton we have

F
(I)
a4d

= F
(I)
t4d

∣

∣

∣〈〈α
(J)
−1 α

(K)
−1 α

(L)
−1 α

(H)
−1 〉〉o

∣

∣

∣

2
, I = 1, . . . , 5, J 6= K 6= L 6= H 6= I. (A.35)

For these matter correlators we find

〈〈α
(I)
−1α

(J)
−1 α

(K)
−1 α

(5)
−1〉〉o = −ρIρJρKρ5

(

1

z2
IJ

+
1

z2
IK

+
1

z2
JK

)

, I, J,K 6= 5

〈〈α
(1)
−1α

(2)
−1α

(3)
−1α

(4)
−1〉〉o = ρ1ρ2ρ3ρ4

(

1

(ξ1 − ξ2)2
+

1

ξ2
1(1 − ξ2)2

+
1

ξ2
2(1 − ξ1)2

)

. (A.36)

The results of the integrations are shown in table 1.

A.4 Contact terms of four tachyons and one field of level four

The level four fields f1, f2, f3 and g1 were defined in (5.1). We will need a few new open

correlators. We define

PIJKL ≡ 〈b−2c
(I)
1 , c

(J)
1 , c

(K)
1 , c

(L)
1 〉o, Q3 ≡ 〈c

(1)
1 , c

(2)
1 , b

(3)
−2, c

(4)
1 , c

(5)
1 〉o, GI ≡ 〈〈L

(I)
−2〉〉o.

(A.37)

Elementary calculations give the following expressions for the correlators that we need

PIJK5 =
ρI

ρJρKρ5
zJK

(

1

zIJ

+
1

zIK

− 3βI

)

P51IJ =
ρ5

ρ1ρIρJ
zIJ (zIzJ (1 + ξ1 + ξ2 + 3β5) − ξ1ξ2)
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Q3 =
ρ2
3

ρ1ρ2ρ4ρ5

ξ2(1 − ξ2)

ξ1(1 − ξ1)(ξ1 − ξ2)

GI =
13

6
ρ2

I

(

2β2
I − ǫI

)

, (A.38)

where I, J,K = 1, . . . , 4. And for the functions to integrate we find

F
(3)
t4f1

=
2

ρ2
4

(

∣

∣B3
1,1

∣

∣

2
−

∣

∣C3
1,1

∣

∣

2
)

|C125|
2 (A.39)

F
(I)
t4f1

=4Re

{

|DIJK |2

2ρ2
3ρ

2
4

+
BI

1,1

ρ3ρ2
4

CJ3KDIJK +
BI

2,1

ρ2
3ρ4

CJ4KDIJK

+
|CJ4K |2

2ρ2
3

(

∣

∣BI
2,1

∣

∣

2
−

∣

∣CI
2,1

∣

∣

2
)

+
|CJ3K |2

2ρ2
4

(

∣

∣BI
1,1

∣

∣

2
−

∣

∣CI
1,1

∣

∣

2
)

+
1

ρ3ρ4

(

BI
1,1B

I
2,1 − CI

1,1C
I
2,1

)

CJ3KCJ4K

}

, I 6= J 6= K 6= 3 6= 4 (A.40)

F
(I)
t4f2

=
2

ρ2
3ρ

2
4

|GI |
2 |C125|

2 , I = 1, . . . , 5 (A.41)

F
(3)
t4f3

=
4

ρ3ρ2
4

|C125|
2 Re

{

G3B3
1,1

}

(A.42)

F
(I)
t4f3

=4Re

{

GICIJK

ρ2
3ρ

2
4

(

DIJK + ρ3BI
1,1CJ3K + ρ4BI

2,1CJ4K

)

}

, I 6= J 6= K 6= 3 6= 4

(A.43)

F
(3)
t4g1

=4Re

{

C125

(

C3
1,2

ρ3ρ2
4

P3125 +
C3

2,2

ρ2
3ρ4

Q3

)}

(A.44)

F
(I)
t4g1

=4Re

{

CIJK

(

CI
1,2

ρ3ρ2
4

PIJ3K +
CI

2,2

ρ2
3ρ4

PIJ4K

)}

, I 6= J 6= K 6= 3 6= 4 (A.45)

The results of the integrations are shown in table 7.
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